Natalie Elphick
Bioinformatician II
Min-Gyoung Shin
Bioinformatician III
# A tibble: 6 × 11
manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa…
2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa…
3 audi a4 2 2008 4 manual(m6) f 20 31 p compa…
4 audi a4 2 2008 4 auto(av) f 21 30 p compa…
5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa…
6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa…
# A tibble: 234 × 4
year cty hwy manufacturer
<int> <int> <int> <chr>
1 1999 18 29 audi
2 1999 21 29 audi
3 2008 20 31 audi
4 2008 21 30 audi
5 1999 16 26 audi
6 1999 18 26 audi
7 2008 18 27 audi
8 1999 18 26 audi
9 1999 16 25 audi
10 2008 20 28 audi
# ℹ 224 more rows
# A tibble: 117 × 11
manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
1 audi a4 2 2008 4 manu… f 20 31 p comp…
2 audi a4 2 2008 4 auto… f 21 30 p comp…
3 audi a4 3.1 2008 6 auto… f 18 27 p comp…
4 audi a4 quattro 2 2008 4 manu… 4 20 28 p comp…
5 audi a4 quattro 2 2008 4 auto… 4 19 27 p comp…
6 audi a4 quattro 3.1 2008 6 auto… 4 17 25 p comp…
7 audi a4 quattro 3.1 2008 6 manu… 4 15 25 p comp…
8 audi a6 quattro 3.1 2008 6 auto… 4 17 25 p mids…
9 audi a6 quattro 4.2 2008 8 auto… 4 16 23 p mids…
10 chevrolet c1500 sub… 5.3 2008 8 auto… r 14 20 r suv
# ℹ 107 more rows
# A tibble: 234 × 11
manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
1 volkswagen new beetle 1.9 1999 4 manu… f 35 44 d subc…
2 volkswagen jetta 1.9 1999 4 manu… f 33 44 d comp…
3 volkswagen new beetle 1.9 1999 4 auto… f 29 41 d subc…
4 honda civic 1.6 1999 4 manu… f 28 33 r subc…
5 toyota corolla 1.8 2008 4 manu… f 28 37 r comp…
6 honda civic 1.8 2008 4 manu… f 26 34 r subc…
7 toyota corolla 1.8 1999 4 manu… f 26 35 r comp…
8 toyota corolla 1.8 2008 4 auto… f 26 35 r comp…
9 honda civic 1.6 1999 4 manu… f 25 32 r subc…
10 honda civic 1.8 2008 4 auto… f 25 36 r subc…
# ℹ 224 more rows
# A tibble: 10 × 3
manufacturer mean_cty median_cty
<chr> <dbl> <dbl>
1 audi 17.6 17.5
2 chevrolet 15 15
3 dodge 13.1 13
4 ford 14 14
5 honda 24.4 24
6 hyundai 18.6 18.5
7 jeep 13.5 14
8 land rover 11.5 11.5
9 lincoln 11.3 11
10 mercury 13.2 13
mpg |>
group_by(manufacturer) |>
summarise(mean_cty = mean(cty),
median_cty = median(cty)) |>
head(5)
# A tibble: 5 × 3
manufacturer mean_cty median_cty
<chr> <dbl> <dbl>
1 audi 17.6 17.5
2 chevrolet 15 15
3 dodge 13.1 13
4 ford 14 14
5 honda 24.4 24
ggplot(data = mpg, # Input dataframe
mapping = aes(x = cty, y = hwy)) + # Aesthetic mapping
geom_point() # Point graph
ggplot(data = mpg,
mapping = aes(x = cty, y = hwy)) +
geom_point(color = "brown") +
geom_smooth(formula = y ~ x, method = "lm")
10:00
Order | Family | Genus | Species | Binomial | ActivityCycle | AdultBodyMass_g | AdultForearmLen_mm | AdultHeadBodyLen_mm | AgeatEyeOpening_d | AgeatFirstBirth_d | BasalMetRate_mLO2hr | BasalMetRateMass_g | DietBreadth | DispersalAge_d | GestationLen_d | HabitatBreadth | HomeRange_km2 | HomeRange_Indiv_km2 | InterbirthInterval_d | LitterSize | LittersPerYear | MaxLongevity_m | NeonateBodyMass_g | NeonateHeadBodyLen_mm | PopulationDensity_n/km2 | PopulationGrpSize | SexualMaturityAge_d | SocialGrpSize | Terrestriality | TrophicLevel | WeaningAge_d | WeaningBodyMass_g | WeaningHeadBodyLen_mm | References | AdultBodyMass_g_EXT | LittersPerYear_EXT | NeonateBodyMass_g_EXT | WeaningBodyMass_g_EXT | GR_Area_km2 | GR_MaxLat_dd | GR_MinLat_dd | GR_MidRangeLat_dd | GR_MaxLong_dd | GR_MinLong_dd | GR_MidRangeLong_dd | HuPopDen_Min_n/km2 | HuPopDen_Mean_n/km2 | HuPopDen_5p_n/km2 | HuPopDen_Change | Precip_Mean_mm | Temp_Mean_01degC | AET_Mean_mm | PET_Mean_mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carnivora | Canidae | Canis | latrans | Canis latrans | crepuscular | 11989.1 | NA | 872.39 | 11.94 | 365 | 3699 | 10450 | 1 | 255 | 61.74 | 1 | 18.88 | 19.91 | 365 | 5.72 | NA | 262 | 200.01 | NA | 0.25 | NA | 372.9 | NA | fossorial | carnivore | 43.71 | NA | NA | 367;542;543;730;1113;1297;1573;1822;2655 | NA | 1.1000000000000001 | NA | NA | 17099094.300000001 | 71.39 | 8.02 | 39.700000000000003 | -67.069999999999993 | -168.12 | -117.6 | 0 | 27.27 | 0 | 0.06 | 53.03 | 58.18 | 503.02 | 728.37 |
Carnivora | Canidae | Canis | lupus | Canis lupus | crepuscular | 31756.51 | NA | 1055 | 14.01 | 547.5 | 11254.2 | 33100 | 1 | 180 | 63.5 | 1 | 159.86000000000001 | 43.13 | 365 | 4.9800000000000004 | 2 | 354 | 412.31 | NA | 0.01 | NA | 679.37 | NA | fossorial | carnivore | 44.82 | NA | NA | 367;542;543;730;1015;1052;1113;1297;1573;1594;2338;2655 | NA | NA | NA | NA | 50803439.700000003 | 83.27 | 11.48 | 47.38 | 179.65 | -171.84 | 3.9 | 0 | 37.869999999999997 | 0 | 0.04 | 34.79 | 4.82 | 313.33 | 561.11 |
Carnivora | Canidae | Canis | simensis | Canis simensis | diurnal | 14361.86 | NA | 938.19 | NA | NA | NA | NA | 1 | 180 | 63.61 | 1 | 4.2 | 5.0199999999999996 | 365 | NA | NA | NA | NA | NA | 1.2 | NA | 754.74 | NA | fossorial | carnivore | 69.599999999999994 | NA | NA | 542;730;1113;1573;2655 | NA | 1.1000000000000001 | NA | NA | 11402.81 | 13.31 | 6.55 | 9.93 | 39.96 | 38.020000000000003 | 38.99 | 30 | 99.87 | 30 | 0.15 | 83.87 | 99.03 | 931.35 | 1471.36 |
Carnivora | Canidae | Atelocynus | microtis | Atelocynus microtis | NA | 8363.2199999999993 | NA | 831.01 | NA | NA | NA | NA | 1 | NA | NA | 1 | NA | NA | NA | NA | NA | 132 | NA | NA | NA | NA | NA | 1 | fossorial | carnivore | NA | NA | NA | 543;890;1113;2655 | NA | NA | NA | NA | 7634256.5999999996 | 4.79 | -32.31 | -13.76 | -43.54 | -78.61 | -61.08 | 0 | 7.43 | 0 | 0.12 | 163.06 | 235.49 | 1316.27 | 1488 |
Cetacea | Balaenopteridae | Balaenoptera | musculus | Balaenoptera musculus | NA | 154321304.5 | NA | 30480 | NA | NA | NA | NA | 1 | NA | 326.97000000000003 | 1 | NA | NA | 821.25 | 1 | 0.45 | 1320 | 2738612.79 | 7236.55 | NA | 1 | 1959.8 | 1.25 | NA | carnivore | 211.71 | 16999999.969999999 | NA | 172;511;543;899;1004;1015;1217;1297;2151;2409;2655 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Cetacea | Balaenopteridae | Balaenoptera | physalus | Balaenoptera physalus | NA | 47506008.229999997 | NA | 20641.060000000001 | NA | NA | NA | NA | 2 | NA | 338.36 | 1 | NA | NA | 730 | 1.01 | 0.37 | 1392 | 1899999.99 | 6273.75 | NA | 1.5 | 2666.41 | NA | NA | carnivore | 196.58 | NA | 12000 | 24;27;543;899;1004;1015;1217;1297;1577;2151;2655 | NA | NA | NA | 6395530.4199999999 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Steps:
1. Combine and clean the data
2. Visualize adult body mass by trophic level
3. Check for overrepresented groups
4. Fit a simple linear model
example_code/1_convert_syntax_example.R
for an example use
caseFor any bioinformatics specific questions feel free to reach out to the Gladstone Bioinformatics Core.
Code templates can be used to avoid typing the same code over and over again.
Introduction
to Unix Command Line
February 10-February 11, 2025 1:00-3:00pm PST
Introduction
to RNA-Seq Analysis
February 13-February 14, 2025 1:00-4:00pm PST
Intermediate
RNA-Seq Analysis Using R
February 20, 2025 9:00am-12:00pm PST